Arabidopsis MSI1 functions in photoperiodic flowering time control

نویسندگان

  • Yvonne Steinbach
  • Lars Hennig
چکیده

Appropriate timing of flowering is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals such as photoperiod, vernalization or light quality, ambient temperature and biotic as well as abiotic stresses. The key florigenic signal FLOWERING LOCUS T (FT) is regulated by several flowering activators, such as CONSTANS (CO), and repressors, such as FLOWERING LOCUS C (FLC). Chromatin modifications are essential for regulated gene expression, which often involves the well conserved MULTICOPY SUPRESSOR OF IRA 1 (MSI1)-like protein family. MSI1-like proteins are ubiquitous partners of various complexes, such as POLYCOMB REPRESSIVE COMPLEX2 or CHROMATIN ASSEMBLY FACTOR 1. In Arabidopsis, one of the functions of MSI1 is to control the switch to flowering. Arabidopsis MSI1 is needed for the correct expression of the floral integrator gene SUPPRESSOR OF CO 1 (SOC1). Here, we show that the histone-binding protein MSI1 acts in the photoperiod pathway to regulate normal expression of CO in long day (LD) photoperiods. Reduced expression of CO in msi1-mutants leads to failure of FT and SOC1 activation and to delayed flowering. MSI1 is needed for normal sensitivity of Arabidopsis to photoperiod, because msi1-mutants responded less than wild type to an intermittent LD treatment of plants grown in short days. Finally, genetic analysis demonstrated that MSI1 acts upstream of the CO-FT pathway to enable an efficient photoperiodic response and to induce flowering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of flowering time by Arabidopsis MSI1.

The transition to flowering is tightly controlled by endogenous programs and environmental signals. We found that MSI1 is a novel flowering-time gene in Arabidopsis. Both partially complemented msi1 mutants and MSI1 antisense plants were late flowering, whereas ectopic expression of MSI1 accelerated flowering. Physiological experiments revealed that MSI1 is similar to genes from the autonomous ...

متن کامل

Time to flower: interplay between photoperiod and the circadian clock.

Plants precisely time the onset of flowering to ensure reproductive success. A major factor in seasonal control of flowering time is the photoperiod. The length of the daily light period is measured by the circadian clock in leaves, and a signal is conveyed to the shoot apex to initiate floral transition accordingly. In the last two decades, the molecular players in the photoperiodic pathway ha...

متن کامل

Photoperiodic flowering of Arabidopsis : integrating genetic and physiological approaches to characterization of the floral stimulus

In many plants the transition from vegetative growth to flowering is controlled by environmental cues. One of these cues is day length or photoperiod, which synchronizes flowering of many species with the changing seasons. Recently, advances have been made in understanding the molecular mechanisms that confer photoperiodic control of flowering and, in particular, how inductive events occurring ...

متن کامل

Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean.

Photoperiodic control of flowering time is believed to affect latitudinal distribution of plants. The blue light receptor CRY2 regulates photoperiodic flowering in the experimental model plant Arabidopsis thaliana. However, it is unclear whether genetic variations affecting cryptochrome activity or expression is broadly associated with latitudinal distribution of plants. We report here an inves...

متن کامل

Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis.

Protein ubiquitination is involved in most cellular processes. In Arabidopsis (Arabidopsis thaliana), ubiquitin-mediated protein degradation regulates the stability of key components of the circadian clock feedback loops and the photoperiodic flowering pathway. Here, we identified two ubiquitin-specific proteases, UBP12 and UBP13, involved in circadian clock and photoperiodic flowering regulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014